Bibliography
-
PtX Lab Briefing | Fit for Zero — Climate-neutral European aviation in 2050 (09/2024)
References
All references and links were last checked and retrieved on 26 September 2024.
[1] EU. Regulation (EU) 2023/2405 of the European Parliament und of the Council of 18 October on ensuring a level playing field for sustainable air transport (“ReFuelEU Aviation”), OJ L 2023/2405, 31.10.2023. 2023.
[2] IATA. Sustainable aviation fuel output increases, but volumes still low. Washington, D.C.: International Air Transport Association; 2023.
[3] IATA. Jet Fuel Price Monitor. 2024.
[4] Pahle M, Sitarz J, Osorio S, Görlach B. The EU-ETS price through 2030 and beyond: A closer look at drivers, models and assumptions Input material and takeaways from a workshop in Brussels. Potsdam: Potsdam-Institut für Klimafolgenforschung; 2022.
[5] ICAO. Innovation for a Green Transition: 2022 Environmental Report. 2022.
[6] ICAO. Post-COVID-19 Forecasts Scenarios. 2021. URL: https://www.icao.int/sustainability/Pages/Post-Covid-Forecasts-Scenarios.aspx (accessed on 15.05.2024).
[7] Scheelhaase J, Maertens S, Grimme W. Synthetic fuels in aviation – Current barriers and potential political measures. Transportation Research Procedia 2019, 43:21–30.
[8] en2x. Klimaneutrale Luftfahrt: aireg und en2x kooperieren. 2023.
[9] Topsoe. Voices from the Sky: Expert Perspectives on Sustainable Aviation Fuel. Kongens Lyngby: Topsoe; 2023. URL: https://www.topsoe.com/sustainable-aviation-fuel/saf-voices-from-the-sky (accessed on 10.05.2024).
[10] Herzog I. „Not bankable“ – Investitionen in klimafreundliche Kraftstoffe bleiben trotz Quoten aus. 2023. URL: https://www.mobility-impacts.de/new-power/detail/news/not-bankable-investitionen-in-klimafreundliche-kraftstoffe-bleiben-trotz-quoten-aus.html (accessed on 09.05.2024).
[11] Reijnders L. Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels? Energy Policy 2009. 37(8):2839–41.
[12] Arendt R, Bach V, Finkbeiner M. Carbon Offsets: An LCA Perspective. In: Albrecht S, Fischer M, Leistner P, Schebek L (Ed.). Progress in Life Cycle Assessment 2019. Cham: Springer. S. 189–212.
[13] Calel R, Colmer J, Dechezleprêtre A, Glachant M. Do Carbon Offsets Offset Carbon? American Economic Journal: Economic Policy 2024, forthcoming.
[14] Paul C, Bartkowski B, Dönmez C, Don A, Mayer S, Steffens M, u. a. Carbon farming: Are soil carbon certificates a suitable tool for climate change mitigation? Journal of Environmental Management 2023, 330:117-142.
[15] Probst B, Toetzke M, Kontoleon A, Diaz Anadon L, Hoffmann VH. Systematic review of the actual emissions reductions of carbon offset projects across all major sectors. 27 July 2023, PREPRINT (Version 1). Available at Research Square. DOI: 10.21203/rs.3.rs-3149652/v1.
[16] West TAP, Wunder S, Sills EO, Börner J, Rifai SW, Neidermeier AN, u. a. Action needed to make carbon offsets from forest conservation work for climate change mitigation. Science 2023, 381(6660):873–877.
[17] Boonekamp T, E.S. van der Sman, Peerlings, Bram, Kos, Johan. Destination 2050: A Route To Net Zero European Aviation. Amsterdam: Royal Netherlands Aerospace Centre, 2021.
[18] Voigt C, Kleine J, Sauer D, Moore RH, Bräuer T, Le Clercq P, u. a. Cleaner burning aviation fuels can reduce contrail cloudiness. Nature Communications Earth Environment 2021, 2(1).
[19] Molloy J, Teoh R, Harty S, Koudis G, Schumann U, Poll I, u. a. Design Principles for a Contrail-Minimizing Trial in the North Atlantic. Aerospace 2022, 9(7):375.
[20] Baneshi F, Soler M, Simorgh A. Conflict assessment and resolution of climate-optimal aircraft trajectories at network scale. Transportation Research Part D: Transport and Environment 2023, 115:103592.
[21] Niklaß M, Grewe V, Gollnick V, Dahlmann K. Concept of climate-charged airspaces: a potential policy instrument for internalizing aviation’s climate impact of non-CO2 effects. Climate Policy 2021, 21(8):1066–1085.
[22] Moore RH, Thornhill KL, Weinzierl B, Sauer D, D’Ascoli E, Kim J, u. a. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature 2017, 543(7645):411–415.
[23] Teoh R, Schumann U, Voigt C, Schripp T, Shapiro M, Engberg Z, u. a. Targeted Use of Sustainable Aviation Fuel to Maximize Climate Benefits. Environmental Science Technology 2022, 6(23):17246–17255.
[24] Schneider L, Wissner N. Fit for purpose? Key issues for the first review of CORSIA. Freiburg: Öko-Institut e.V., 2022. URL: https://www.oeko.de/fileadmin/oekodoc/Key-issues-for-first-review-of-CORSIA.pdf (accessed on 10.05.2024).
[25] Forster PMDF, Shine KP, Stuber N. It is premature to include non-CO2 effects of aviation in emission trading schemes. Atmospheric Environment 2006, 40(6):1117–1121.
[26] Niklaß M, Dahlmann K, Grewe V, Maertens S, Plohr M, Scheelhaase J, u. a. Integration of Non-CO2 Effects on Aviation in the EU ETS and under CORSIA. Bericht für das Umweltbundesamt, 2019. URL: https://www.umweltbundesamt.de/publikationen/integration-of-non-co2-effects-of-aviation-in-the (accessed on 11.05.2024).
[27] Scheelhaase J, Grimme W, Maertens S. EU trilogue results for the aviation sector – key issues and expected impacts. Transportation Research Procedia 2024, 78:206–214.
Footnotes
(A) Biomass that meets the high sustainability requirements of the Renewable Energy Sources Directive (RED) is also required for the defossilisation of other sectors and is therefore relatively scarce. Electricity-based fuels do not require sustainable biomass. They reduce this scarcity.
(B) The values are based on average scenarios for growth in airline transport (2.7 per cent per year) and improvements in fuel efficiency (1.16 per cent per year) without additional reductions.[5, 6] Depending on future developments, jet fuel consumption in Germany in 2050 could be between 12 million and 17 million tonnes of jet fuel. Based on this, savings of between 15 million and 22 million tonnes in 2050 and between 118 million and 160 million tonnes of CO2eq between 2025 and 2050 could be possible due to better fuel efficiency.
(C) Such a program already exists within the ICAO (Carbon Offsetting and Reduction Scheme for International Aviation, CORSIA), but it does not meet the high sustainability requirements proposed here.
(D) The measures could also be financed from general taxes, which would at least partially avoid price increases. However, with such financing, poorer households, which generally fly less, would subsidize richer ones. Price increases also internalize the costs more strongly in accordance with the polluter pays principle.
(E) Based on an assumed conversion efficiency of 55 per cent and a conversion factor of 0.04 gigajoules/t of biomass.[17] However, due to the large number of different production processes, the energy and resources required to convert biomass to fuel are not considered.
-
PtX Lab Facts | Power-to-X (PtX) in NetZero scenarios in the chemical industry (06/2024)
References
All references and links were last checked and retrieved on 14 May 2023.
(1) Center for Global Commons; Systemiq. Planet Positive Chemicals; Systemiq; Center for Global Commons, 2022. https://www.systemiq.earth/systems/circular-materials/planet-positive-chemicals/ (accessed 2023-05-19).
(2) VCI. Wie die Transformation der Chemie gelingen kann; Verband der Chemischen Industrie e.V., VDI, 2023. https://www.vci.de/services/publikationen/chemistry4climate-abschlussbericht-2023.jsp (accessed 2023-05-19).
(3) Münnich, P.; Somers, J.; Tillmann, U.; Oliveira, C.; Hermanns, R.; Kalousdian, A.; Meys, R.; Baradow, A.; Winter, B. Chemie Im Wandel- Die Drei Grundpfeiler Für Die Transformation Chemischer Wertschöpfungsketten, 2023. https://static.agora-energiewende.de/fileadmin/Projekte/2022/2022-02_IND_Climate_Positive_Chemistry_DE/A-EW_299_Chemie_im_Wandel_DE_WEB.pdf.
(4) Gabrielli, P.; Rosa, L.; Gazzani, M.; Meys, R.; Bardow, A.; Mazzotti, M.; Sansavini, G. Net-Zero Emissions Chemical Industry in a World of Limited Resources. One Earth 2023, 6 (6), 682–704. https://doi.org/10.1016/j.oneear.2023.05.006.
(5) Olfe-Kräutlein, B. Advancing CCU Technologies Pursuant to the SDGs: A Challenge for Policy Making. Front. Energy Res. 2020, 8, 198. https://doi.org/10.3389/fenrg.2020.00198.
(6) Ioannou, I.; Galán-Martín, Á.; Pérez-Ramírez, J.; Guillén-Gosálbez, G. Trade-Offs between Sustainable Development Goals in Carbon Capture and Utilisation. Energy Environ. Sci. 2023, 16 (1), 113–124. https://doi.org/10.1039/D2EE01153K.
(7) Palm, E.; Tilsted, J. P.; Vogl, V.; Nikoleris, A. Imagining Circular Carbon: A Mitigation (Deterrence) Strategy for the Petrochemical Industry. Environ. Sci. Policy 2024, 151, 103640. https://doi.org/10.1016/j.envsci.2023.103640.
(8) Buck, H. J. Mining the Air: Political Ecologies of the Circular Carbon Economy. Environ. Plan. E Nat. Space 2022, 5 (3), 1086–1105. https://doi.org/10.1177/25148486211061452.
(9) Meng, F.; Wagner, A.; Kremer, A. B.; Kanazawa, D.; Leung, J. J.; Goult, P.; Guan, M.; Herrmann, S.; Speelman, E.; Sauter, P.; Lingeswaran, S.; Stuchtey, M. M.; Hansen, K.; Masanet, E.; Serrenho, A. C.; Ishii, N.; Kikuchi, Y.; Cullen, J. M. Planet-Compatible Pathways for Transitioning the Chemical Industry. Proc. Natl. Acad. Sci. 2023, 120 (8), e2218294120. https://doi.org/10.1073/pnas.2218294120.
(10) dena. Dena-Leitstudie Aufbruch Klimaneutralität; Deutsche Energie-Agentur GmbH, Series Ed.; Deutsche Energie Agentur GmbH, 2021.
(11) Doré, L.; Fischedick, M.; Fischer, A.; Hanke, T.; Holtz, G.; Krüger, C.; Lechtenböhmer, S.; Samadi, S.; Saurat, M.; Schneider, C.; Tönjes, A. Treibhausgasneutralität in Deutschland Bis 2045, 2023. https://www.energy4climate.nrw/fileadmin/Service/Publikationen/Ergebnisse_SCI4climate.NRW/Szenarien/2023/treibhausgasneutralitaet-in-deutschland-bis-2045-szenario-cr-sci4climate.nrw.pdf.
(12) BDI; BCG. KLIMAPFADE 2.0: Ein Wirtschaftsprogramm für Klima und Zukunft; Bundesverband der Deutschen Industrie: Berlin, 2021. https://bdi.eu/artikel/news/klimapfade-2-0-ein-wirtschaftsprogramm-fuer-klima-und-zukunft/ (accessed 2021-11-30).
(13) Dr. Geres, R.; Kohn. Andreas; Lenz, Sebastian. Roadmap Chemie 2050: Auf dem Weg zu einer treibhausgasneutralen chemischen Industrie in Deutschland; DECHEMA, 2019. https://www.vci.de/vci/downloads-vci/publikation/2019-10-09-studie-roadmap-chemie-2050-treibhausgasneutralitaet.pdf (accessed 2023-02-13).
(14) Bähr, C.; Bothe, D.; Brändle, G.; Klink, H.; Lichtblau, K.; Sonnen, L.; Zink, B. Die Zukunft Energieintensiver Industrien in Deutschland. Eine Studie von IW Consult Und Frontier Economics Im Auftrag Des Dezernat Zukunft, 2023. https://www.dezernatzukunft.org/wp-content/uploads/2023/09/Baehr-et-al.-2023-Die-Zukunft-energieintensiver-Industrien-in-Deutschland.pdf.
(15) Fraunhofer ISI; Consentec GmbH; ifeu – Institut für Energie- und Umweltforschung Heidelberg GmbH; Technische Universität Berlin. Langfristszenarien Für Die Transformation Des Energiesystems in Deutschland 3- Modul Gebäude; Fraunhofer ISI: Karlsruhe, 2021.
(16) Ausfelder, F.; Tran, D. D. 4. Roadmap Des Kopernikus-Projektes P2X Phase II. https://www.kopernikus-projekte.de/lw_resource/datapool/systemfiles/elements/files/EC7C18F68BCE7C0DE0537E695E86F60F/live/document/221025_DEC_P2X4_V08_Web.pdf.
(17) Bazzanella, A. M.; Ausfelder, F. “Low Carbon Energy and Feedstock for the European Chemical Industry” Study; 2017. https://cefic.org/a-solution-provider-for-sustainability/a-journey-to-sustainability/low-carbon-energy-and-feedstock-for-the-european-chemical-industry-study/ (accessed 2023-06-19).
(18) Prognos; Öko-Institut; Wuppertal-Institut. Klimaneutrales Deutschland 2045. Wie Deutschland seine Klimaziele schon vor 2050 erreichen kann. Zusammenfassung im Auftrag von Stiftung Klimaneutralität.; Agora Energiewende und Agora Verkehrswende: Berlin, 2021. https://static.agora-energiewende.de/fileadmin/Projekte/2021/2021_01_DE_KNDE2045/KNDE2045_Langfassung.pdf (accessed 2021-12-05).
(19) Meys, R.; Kätelhön, A.; Bachmann, M.; Winter, B.; Zibunas, C.; Suh, S.; Bardow, A. Achieving Net-Zero Greenhouse Gas Emission Plastics by a Circular Carbon Economy. Science 2021, 374 (6563), 71–76. https://doi.org/10.1126/science.abg9853.
(20) Kloo, Y.; Nilsson, L. J.; Palm, E. Reaching Net-Zero in the Chemical Industry - a Study of Roadmaps for Industrial Decarbonisation; preprint; SSRN, 2023. https://doi.org/10.2139/ssrn.4358249.
(21) Saygin, D.; Gielen, D. Zero-Emission Pathway for the Global Chemical and Petrochemical Sector. Energies 2021, 14 (13), 3772. https://doi.org/10.3390/en14133772.
(22) Lopez, G.; Keiner, D.; Fasihi, M.; Koiranen, T.; Breyer, C. From Fossil to Green Chemicals: Sustainable Pathways and New Carbon Feedstocks for the Global Chemical Industry. Energy Environ. Sci. 2023, 10.1039.D3EE00478C. https://doi.org/10.1039/D3EE00478C.
(23) Deloitte. IC2050 PROJECT REPORT - Shining a Light on the EU27 Chemical Sector’s Journey toward Climate Neutrality; 2021; Deloitte.
(24) T. Herbst; A. Rehfeldt; M. Arens. Industrial Innovation: Pathways to Deep Decarbonisation of Industry. Part 2: Scenario Analysis and Pathways to Deep Decarbonisation.; ICF; Fraunhofer ISE, 2019. https://climate.ec.europa.eu/system/files/2020- 07/industrial_innovation_part_2_en.pdf.
(25) Bauer, F.; Hansen, T.; Nilsson, L. J. Assessing the Feasibility of Archetypal Transition Pathways towards Carbon Neutrality – A Comparative Analysis of European Industries. Resour. Conserv. Recycl. 2022, 177, 106015. https://doi.org/10.1016/j.resconrec.2021.106015.
(26) Schneider, C. Klimaneutrale Industrie: Ausführliche Darstellung der Schlüsseltechnologien für die Branchen Stahl, Chemie und Zement.
(27) VCI Fact-Finding Studie, AG1; VCI, Series Ed.; Dechema, 2022. https://www.vci.de/ergaenzende-downloads/fact-finding-anlage-4-ergebnisvorstellung-dechema.pdf.
(28) Luderer, G.; Günther, C.; Dominika Sörgel; Kost, C.; Blesl, M.; Haun, M.; Kattelmann, F.; Pietzcker, R.; Rottoli, M.; Schreyer, F.; Sehn, V.; Sievers, L. Deutschland auf dem Weg zur Klimaneutralität 2045; Kopernikus-Projekt Ariadne, Series Ed.; Potsdam-Institut für Klimafolgenforschung, 2021. https://ariadneprojekt.de/publikation/deutschland-auf-dem-weg-zur-klimaneutralitat-2045-szenarienreport/.
(29) Fleiter, T. LANGFRISTSZENARIEN FÜR DIE TRANSFORMATION DES ENERGIESYSTEMS IN DEUTSCHLAND -Tr e i b h a u s g a s n e u t r a l e S z e n a r i e n 2 0 4 5 - I n d u s t r i e s e k t o r , W e b i n a r I n d u s t r i e, 2022. https://www.langfristszenarien.de/enertile-explorer-wAssets/docs/LFSIII_Webinar16.11.2022_Industrie_final.pdf.
(30) Purr, K.; Nuss, P.; Lehmann, H.; Günther, J. Wege in eine ressourcenschonende Treibhausgasneutralität - RESCUE - Studie. 2019. https://doi.org/10.13140/RG.2.2.31423.43682.
(31) Gabrielli, P.; Gazzani, M.; Mazzotti, M. The Role of Carbon Capture and Utilization, Carbon Capture and Storage, and Biomass to Enable a Net-Zero-CO 2 Emissions Chemical Industry. Ind. Eng. Chem. Res. 2020, 59 (15), 7033–7045. https://doi.org/10.1021/acs.iecr.9b06579.
(32) Nurdiawati, A.; Urban, F. Decarbonising the Refinery Sector: A Socio-Technical Analysis of Advanced Biofuels, Green Hydrogen and Carbon Capture and Storage Developments in Sweden. Energy Res. Soc. Sci. 2022, 84, 102358. https://doi.org/10.1016/j.erss.2021.102358.
(33) Industrial Transformation 2050 - Pathways to Net-Zero Emissions from EU Heavy Industry - Material Economics; University of Cambridge Insitute for Sustainability Leadership Cambridge, 2019. https://materialeconomics.com/publications/industrial-transformation-2050 (accessed 2023-05-19).
Footnotes
(A) Only basic chemicals containing carbon are considered in this PtX Lab Facts. Ammonia is excluded from the analysis.
(B) Scenarios commissioned by the VCI: Roadmap Chemistry 2050 and C4C2, 10, Scenario commissioned by the BDI: Climate Pathways 2.09
(C) FT route: 123 GJ/t FT naphtha; MtX routes: MTO: 95.5 GJ/t; MTA: 176 GJ/t.10
(D) Co-processing in this context refers to the simultaneous processing of fossil and renewable raw materials in refineries.
(E) In addition, most scenarios assume that MtO routes will be available on the market from 2030, but MtA routes only after 2035.20 However, FT naphtha could be available as early as 2030, though at higher costs.13 If FT naphtha is produced as a by-product of FT kerosene synthesis, there might still be a market and demand. The EU is stimulating the market for FT kerosene with the introduction of the PtX quota for Sustainable Aviation Fuels (SAF) within the ReFuelEUAviation initiative
-
PtX Lab Facts | Feedstock mix for sustainable chemistry (04/2024)
References
All references and links were last checked and retrieved on 13 December 2023.
(1) Center for Global Commons; Systemiq. Planet Positive Chemicals; Systemiq; Center for Global Commons, 2022. www.systemiq.earth/systems/circular-materials/planet-positive-chemicals.
(2) Gabrielli, P.; Rosa, L.; Gazzani, M. et al. Net-Zero Emissions Chemical Industry in a World of Limited Resources. One Earth 2023, 6 (6), 682-704. doi.org/10.1016/j.oneear.2023.05.006.
(3) Olfe-Kräutlein, B. Advancing CCU Technologies Pursuant to the SDGs: A Challenge for Policy Making. Front. Energy Res. 2020, 8, 198. doi.org/10.3389/fenrg.2020.00198.
(4) Meng, F.; Wagner, A.; Kremer, A. et al. Planet-Compatible Pathways for Transitioning the Chemical Industry. Proc. Natl. Acad. Sci. U.S.A. 2023, 120 (8), e2218294120. doi.org/10.1073/pnas.2218294120.
(5) Carus, M.; Dammer, L.; Raschka, A.; Skoczinski, P.; vom Berg, C. Nova-Paper #12: Renewable Carbon – Key to a Sustainable and Future-Oriented Chemical and Plastic Industry; Nova Institute, 2020. renewable-carbon.eu/publications/product/nova-paper-12-renewable-carbon-key-to-a-sustainable-and-future-oriented-chemical-and-plastic-industry-−-full-version.
(6) Chemistry4Climate: Wie die Transformation der Chemie gelingen kann, Abschlussbericht 2023; Verband der Chemischen Industrie e.V., VDI, 2023. www.vci.de/services/publikationen/chemistry4climate-abschlussbericht-2023.jsp.
(7) Münnich, P.; Somers, J.; Metz, J.; Tillmann, U.; Oliveira, C.; Hermanns, R.; Kalousdian, A.; Meys, R.; Bardow, A.; Winter, B. Chemie Im Wandel - Die drei Grundpfeiler für fie Transformation chemischer Wertschöpfungsketten; Agora Industrie, 2023. https://www.agora-industrie.de/publikationen/chemie-im-wandel.
(8) Bazzanella, A. M.; Ausfelder, F. “Low Carbon Energy and Feedstock for the European Chemical Industry”; CEFIC/DECHEMA, 2017. cefic.org/a-solution-provider-for-sustainability/a-journey-to-sustainability/low-carbon-energy-and-feedstock-for-the-european-chemical-industry-study.
(9) Schneider, C., Samadi, S., Holtz, G., Kobiela, G., Lechtenböhmer, S., Witecka, W. Klimaneutrale Industrie: Ausführliche Darstellung der Schlüsseltechnologien für die Branchen Stahl, Chemie und Zement; Wuppertal Institut im Auftrag von Agora Energiewende, 2019. https://epub.wupperinst.org/frontdoor/index/index/year/2021/docId/7676 .
(10) Ausfelder, F.; Tran, D. D. 4. Roadmap des Kopernikus-Projektes P2X Phase II; Kopernikus-Projekte, 2023. www.kopernikus-projekte.de/lw_resource/datapool/systemfiles/elements/files/EC7C18F68BCE7C0DE0537E695E86F60F/live/document/221025_DEC_P2X4_V08_Web.pdf.
(11) Ioannou, I.; Galán-Martín, Á.; Pérez-Ramírez, J.; Guillén-Gosálbez, G. Trade-Offs between Sustainable Development Goals in Carbon Capture and Utilisation. Energy Environ. Sci. 2023, 16 (1), 113-124. doi.org/10.1039/D2EE01153K.
(12) Galán-Martín, Á.; Tulus, V.; Díaz, I.; Pozo, C.; Pérez-Ramírez, J.; Guillén-Gosálbez, G. Sustainability Footprints of a Renewable Carbon Transition for the Petrochemical Sector within Planetary Boundaries. One Earth 2021, 4 (4), 565-583. doi.org/10.1016/j.oneear.2021.04.001.
(13) Kähler, F.; Porc, O.; Carus, M. RCI Carbon Flows Report: Compilation of Supply and Demand of Fossil and Renewable Carbon on a Global and European Level; Renewable Carbon Initiative, 2023. renewable-carbon.eu/publications/product/the-renewable-carbon-initiatives-carbon-flows-report-pdf.
(14) Daley, F.; Lawrie, C. Fuelling Failure - How Coal, Oil and Gas Sabotage All Seventeen Sustainable Development Goals; University of Sussex, 2021. https://fossilfueltreaty.org/fuelling-failure.
(15) Bertrand S.; McGinn, A. Fact Sheet: Climate, Environmental, and Health Impacts of Fossil Fuels; Environmental and Energy Study Institute (EESI), 2021. www.eesi.org/files/FactSheet_Fossil_Fuel_Externalities_2021.pdf.
(16) Blackbox Chemieindustrie: Die energieintensivste Industrie Deutschlands; BUND Deutschland e.V. ,2023. https://www.bund.net/service/publikationen/detail/publication/blackbox-chemieindustrie.
(17) Buck, H. J. Mining the Air: Political Ecologies of the Circular Carbon Economy. Environment and Planning E: Nature and Space 2022, 5 (3), 1086-1105. doi.org/10.1177/25148486211061452.
(18) Palm, E.; Tilsted, J. P.; Vogl, V.; Nikoleris, A. Imagining Circular Carbon: A Mitigation (Deterrence) Strategy for the Petrochemical Industry. Environmental Science & Policy 2024, 151, 103640. doi.org/10.1016/j.envsci.2023.103640.
(19) Sartor, O.; Azaïs, N., Burmeister, H.; Münnich, P.; Oliveira, C.; Witecka, W. Mobilising the Circular Economy for Energy-Intensive Materials: How Europe Can Accelerate Its Transition to Fossil-Free, Energy-Efficient and Independent Industrial Production; Agora Industry, 2022. www.agora-energiewende.de/en/publications/mobilising-the-circular-economy-for-energy-intensive-materials-study.
(20) Wendler, K. Fact-Finding Studie AG2 Kreislaufwirtschaft und Rohstoffversorgung der Zukunft; Dechema, 2022. www.vci.de/ergaenzende-downloads/anlage-3-fact-finding-ergebnisvorstellung-dechema-ag2.pdf.
(21) vom Berg, C.; Carus, M. Making a Case for Carbon Capture and Utilisation (CCU) – It Is Much More Than Just a Carbon Removal Technology; Renewable Carbon Initiative, 2023. https://doi.org/10.52548/VYKR3129.
(22) World Energy Outlook 2022; IEA, 2022. https://www.iea.org/reports/world-energy-outlook-2022.
(23) Geres, R.; Kohn, A.; Lenz, S. Roadmap Chemie 2050: Auf dem Weg zu einer treibhausgasneutralen chemischen Industrie in Deutschland; DECHEMA/FutureCamp, 2019. www.vci.de/vci/downloads-vci/publikation/2019-10-09-studie-roadmap-chemie-2050-treibhausgasneutralitaet.pdf.
(24) Bringezu, S.; Kaiser, S.; Turnau, S. Zukünftige Nutzung von CO2 als Rohstoffbasis der deutschen Chemie- und Kunststoffindustrie - eine Roadmap; Universität Kassel, 2020. doi.org/10.17170/KOBRA-202002211019.
(25) Gabrielli, P.; Gazzani, M.; Mazzotti, M. The Role of Carbon Capture and Utilization, Carbon Capture and Storage, and Biomass to Enable a Net-Zero-CO2 Emissions Chemical Industry. Ind. Eng. Chem. Res. 2020, 59 (15), 7033-7045. doi.org/10.1021/acs.iecr.9b06579.
(26) Kaiser, S.; Digulla, F.-E.; Bringezu, S. CO2 als Kohlenstoffquelle für Kunststoffprodukte: Vergleichende Analyse von CO2- und fossilbasierten Wertschöpfungsketten; Center for Environmental Systems Research (CESR), 2023. co2-utilization.net/fileadmin/user_upload/Workshop-Serie/Joint_Venture/Fallstudie_CO2_basierte_Kunststoffe_v2.pdf.
(27) Fleiter, T.; Rehfeldt, M.; Manz, P.; Neuwith, M.; Herbst, A.; Lotz, T. Langfristszenarien für die Transformation des Energiesystems in Deutschland - Treibhausgasneutrale Szenarien 2045 - Industriesektor, Webinar Industrie; Fraunhofer ISI, 2022. www.langfristszenarien.de/enertile-explorer-wAssets/docs/LFSIII_Webinar16.11.2022_Industrie_final.pdf.
(28) Blaumeiser, D. Wasserstoff in der chemischen Industrie; Wasserstoff Kompass 2023. www.wasserstoff-kompass.de/fileadmin/user_upload/img/news-und-media/dokumente/Chemische_Industrie.pdf.
(29) Fortschreibung der Nationalen Wasserstoffstrategie NWS 2023; BMWK, 2023. www.bmwk.de/Redaktion/DE/Publikationen/Energie/fortschreibung-nationale-wasserstoffstrategie.pdf.
(30) Die Nationale Wasserstoffstrategie; BMWi, 2020. www.bmwi.de/Redaktion/DE/Publikationen/Energie/die-nationale-wasserstoffstrategie.pdf.
(31) Evaluierungsbericht der Bundesregierung zum Kohlenstoffdioxid-Speicherungsgesetz (KSpG); Bundesregierung, 2022. www.bmwk.de/Redaktion/DE/Downloads/Energiedaten/evaluierungsbericht-bundesregierung-kspg.html.
(32) European Commission, Directorare-General for Climate Action, Turnau, S.; Jaspers, D.; Marxen, A. et al. Identification and Analysis of Promising Carbon Capture and Utilisation Technologies, Including Their Regulatory Aspects - Final Report.; Publications Office, 2019. https://data.europa.eu/doi/10.2834/348288.
(33) Nurdiawati, A.; Urban, F. Decarbonising the Refinery Sector: A Socio-Technical Analysis of Advanced Biofuels, Green Hydrogen and Carbon Capture and Storage Developments in Sweden. Energy Research & Social Science 2022, 84, 102358. https://doi.org/10.1016/j.erss.2021.102358.
(34) Kätelhön, A.; Meys, R.; Deutz, S.; Suh, S.; Bardow, A. Climate Change Mitigation Potential of Carbon Capture and Utilization in the Chemical Industry. Proc Natl Acad Sci U S A 2019, 116 (23), 11187-11194. https://doi.org/10.1073/pnas.1821029116.
Footnotes
(A) A maximum available potential of biogenic residues and waste materials of 48 Mt7 (straw, wood, manure) and a minimum of 6.4 Mt6 (straw, wood) were assumed, as well as a carbon content of the biomass of 50 percent and a process efficiency of Biomass to chemicals of 36 percent7. The total carbon demand for basic chemicals is forecast to be 13.6 Mt in 2045 and 17.1 Mt for the entire chemical industry in Germany.21
(B) Meng et al. 20234 calculates a potential for demand reduction by R&S of 15.5 to 24 percent of global basic chemical demand. With the assumptions from the demand model of the LC-NFAX scenario by Meng et al. In 2023, carbon demand in Germany could be reduced by around 2.4 Mt.
(C) The Hydrogen Compass expects that with 4,000 full load hours and an electrolysis efficiency of 70 percent, that with the political goal of 10 GW of electrolysis capacity in Germany by 2030, 28 TWh of hydrogen will be produced in Germany.